B. P. Pashaev and D. K. Palchaev

A simple formula is presented that establishes an unambiguous relation between the electrical resistivity and the thermal expansion coefficient of metals from roughly 0° K to the phase-transition temperature.

It is known [1-3] that for a description of the electrical resistivity of liquid metals, it is much more precise to consider the electrical resistivity to be a function of volume rather than of temperature. In this case, according to [1, 2], function $\rho = f(V)$ is continuous during the transition from solid to liquid. Considerations of a physical nature, in particular those introduced in [2], support the proposition that the volume dependence of the potential field which scatters conduction electrons indicates a dependence upon the free or accessible volume $\Delta V = V - V_0$, where V_0 and V are the volumes for 0°K and T°K, respectively. The variation of the quantity ΔV with temperature is determined by the product $\bar{\alpha}_V T$, where α_V is the average volume coefficient of expansion in the temperature interval 0 to T°K.

An empirical material analysis by electrical resistivity of solid metals leads to the conclusion that the dependence $\rho = f(\alpha_V T)$ has no less regular a character, where $\alpha_V = dV/dTV$.

		\		
Meta1	<i>Т</i> , қ	$\rho \cdot 10^{s}, \Omega \cdot m$ [4-8]	α _V ·10°, 1/Κ [9]	$\frac{\rho}{\alpha_V^T}$, $\Omega \cdot \mathbf{m}$
Sodium	80	0,79	115,5	82•10 ⁻ 8
	100	1,15	137,1	81
	200	2,89	194,1	73
	300	4,93	214,5	77
	350	6,23	223,8	80
Gold	50 200 500 1000 1300	0,199 1,44 3,95 8,96 12,83	22,9 39,9 45,0 53,1 59,7	$171.10^{-8} \\ 179 \\ 176 \\ 174 \\ 172$
Magnesium	40	0,068	9,18	182-10 ⁻⁸
	100	0,902	46,1	192
	200	3,74	68,4	198
	400	6,18	81,9	189
	600	9,51	93,0	174
Indium	70	1,60	68,2	33.10 ⁻⁷
	100	2,45	76,5	32
	200	5,45	82,5	33
	300	9,00	90,9	33
	400	13,5	116,4	29
Lead	113	7,43	77,1	84 • 10 7
	303	22,0	85,5	85
	400	30,4	88,9	86
	500	39,7	95,2	84
	600	49,8	103,5	82
Tungsten	40	0,0664	1,2	138 • 10 ^{- 7}
	100	1,027	6,9	149
	600	13,14	14,1	155
	1400	37,26	15,9	169
	2200	63,80,	20,1	148

TABLE 1. Reference Data and the Results of Calculations

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 41, No. 4, pp. 717-719, October, 1981. Original article submitted August 25, 1980.

By this it is possible to determine a simple relation for the temperature interval from $\sim 0^{\circ}$ K to the phase-transition temperature:

$$\rho/\alpha_{\nu}T = \rho^* = \text{const},\tag{1}$$

where ρ is the difference between the measured and residual electrical resistance value ρ_0 and ρ^* is a constant characteristic of each metal. The scatter in the data obtained with formula (1) from their mean value is generally determined by the inaccuracy in the quantity α_V (5-10%). Data corresponding to metals representing different groups are shown in Table 1.

A rule analogous to (1) is valid for liquid metals also.

A definite correlation was observed between the quantity ρ *, which has the dimensions of electrical resistivity, and the resistivity at the melting point ρ_m :

$$\rho^* = A \rho_{\rm m},\tag{2}$$

where A is a constant for practically all metals.

Possible practical applications of the given laws include: first, the determination of α by formula (1) based upon electrical resistivity data, i.e., upon a quantity more easily and precisely measured in the region inaccessible for investigating α ; and second, the determination of α and ρ when one of these quantities is known and the determination of ρ_m from formula (2). Moreover, the deviation from formula (1) at low temperatures may serve as an indication of the purity of the metals.

LITERATURE CITED

- A. N. Solov'ev, "The dependence of the electrical resistance of liquid metals upon the specific volume," Teplofiz. Vys. Temp., <u>1</u>, No. 1, 45-49 (1963).
 A. N. Solov'ev, "Electrical conductivity and the specific volume of liquid metals," Zh.
- A. N. Solov'ev, "Electrical conductivity and the specific volume of liquid metals," Zh. Prikl. Mekh. Tekh. Fiz., No. 6, 153-157 (1963).
- 3. S. N. Banchila and L. P. Filippov, "An investigation of the electrical conductivity of liquid metals," Teplofiz. Vys. Temp., 11, No. 6, 1301-1305 (1973).
- 4. T. G. Chi, "Electrical resistivity of alkali and alkali earth elements," J. Phys. Chem. Ref. Data, 8, No. 2, 339-497 (1979).
- 5. R. A. Matula and P. G. Klemens, "Electrical resistivity of gold," High Temp.-High Press., 10, 105-108 (1978).
- D. K. Palchaev and B. P. Pashaev, "The electrical resistivity of thallium and lead in the temperature interval from 300 to 1050°K," Teplofiz. Vys. Temp., <u>16</u>, No. 4, 878-880 (1978).
- J. G. Hust, "Thermal conductivity and electric resistivity of standard reference materials: tungsten (to 3000°K)," High Temp.-High Press., <u>8</u>, 377-390 (1976).
- 8. R. W. Powell, M. J. Woodman, and R. P. Tye, "Thermal conductivity and electric resistivity of indium," Phil. Mag., 7, 1183-1185 (1962).
- 9. S. I. Novikova, The Thermal Expansion of Solid Bodies [in Russian], Nauka, Moscow (1976).